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Nonlinear stability of core-annular flow near points of the neutral curves a t  which 
perfect coreannular flow loses stability is studied using Ginzburg-Landau equations. 
Most of the core-annular flows are always unstable. Therefore the set of core-annular 
flows having critical Reynolds numbers is small, so that the set of flows for which our 
analysis applies is small. An efficient and accurate algorithm for computing all the 
coefficients of the Ginzburg-Landau equation is implemented. The nonlinear flows 
seen in the experiments do not appear to be modulations of monochromatic waves, 
and we see no evidence for soliton-like structures. We explore the bifurcation 
structure of finite-amplitude monochromatic waves a t  criticality. The bifurcation 
theory is consistent with observations in some of the flow cases to which it applies 
and is not inconsistent in the other cases. 

1. Introduction 
This paper is a continuation of the study of the stability of water-lubricated 

core-annular flows. I n  the previous studies, Joseph, Renardy & Renardy (1984), 
Preziosi, Chen &, Joseph (1989, hereinafter referred to  as PCJ) ,  Hu & Joseph (1989, 
hereinafter referred to  as HJ), Chen, Bai & Joseph (1990, hereinafter referred to as 
CBJ), and more recently Bai, Chen & Joseph (1991, hereinafter referred to  as BCJ), 
calculations from the linear theory of stability were reported and compared with 
experiments. Surprisingly, the linear theory turned out to be good for predicting 
wavelengths, wave speeds and flow types in flows which are far from the perfect 
core-annular state (which the linear theory is supposed to perturb only slightly). 
However, there are some situations for which the linear theory fails, and it is of 
interest here to see what understanding can be achieved from nonlinear theory. One 
such situation mentioned by BCJ is a regime in which oil seizes the pipe wall. Efforts 
are also made here to correlate the ‘bamboo ’ waves, shown in figure 1, which are the 
dominant flow regime in up-flow, to the weakly nonlinear analysis. Unfortunately, it 
is found that these waves cannot be obtained from this theory. 

The first type of nonlinear analysis we might try is bifurcation theory. This theory, 
however, is restricted in applications to those cases in which there is a threshold for 
instability; in our situation this means cases in which stable PCAF (perfect 
core-annular flow) is possible (the neutral curves are separated as in figures 3 and 4). 
In  these cases we may go beyond bifurcation into monochromatic waves and derive 
amplitude equations which allow for slow modulations of wavy flow in space and 
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FIGURE 1. Bamboo waves observed in up-flows of motor oil and water. The oil has a viscosity of 
13.32 poise and a density of 0.881 g/cm3 at room temperature T = 22 "C. The volume flow rates are 
Q, = 0.11332 GPM, &, = 0.05284 GPM (from BCJ 1990). 

time. This amplitude equation is called the Ginzburg-Landau equation. t There are 
many regimes of flow which give rise to separated neutral curves for which Ginzburg- 
Landau equation may be applied. There are even more regimes in which PCAF is not 
possible and analytical approaches to the nonlinear problem in these cases seem to 
be unknown. The neutral curves shown in figures 10 and 14 of YCJ and figure 19 of 
CBJ where the upper and the lower branches have merged to form left and right 
branches, will not allow for bifurcation analysis. Unfortunately, the case m $ 1 
which is typical of applications in which the oil is very viscous is one of these cases 
(see Hu, Lundgren & Joseph 1990, hereinafter referred to as HLJ).  

Amplitude equations are derived under restricted conditions. Once derived, they 
take on a life of their own and may be applied in all sorts of situations for which they 

t The so-called 'Ginzburg-Landau' equation which we derive actually follows the work of 
Newell (1974) and Stewartson t Stuart  (1971) who extended the work of Newell t Whitehead 
(1969) and Segel(l969) t o  the unsteady case in which the marginally stable eigenvalue at criticality 
is purely imaginary, as in Hopf bifurcation. Ginzburg t Landau (1950) did write down, but  did not 
derive a differential amplitude equation with slow modulation for the theory of superconductivity. 
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FIGURE 2. Corkscrew waves observed in down-flows of motor oil and water. The oil has a viscosity 
of 13.32 poise and a density of 0.881 g/cm3 at rooin temperature T = 22 O C .  The volume rates are 
&, = 0.082 12 GPM, &, = 0.052 84 GPM (from RC.J 1990). 

were never intended. For example, the Ginzburg-Landau equation presumably 
applies only to small-amplitude waves which modulate a monochromatic wave of 
wavelength 27c/a,, where a, is the critical wavenumber at the nose of the neutral 
curve. A modulated wave solving the Ginzburg-Landau equation (3.12) has a slowly 
varying amplitude A ( [ , T ) , ~  = e ( z - c c , t ) , ~  = e2t (see (3.3)), where c: (given by (3.1)) is 
small and determines the bandwidth of excited waves centred on the wavelength 
27c/a, of the monochromatic wave. A ( [ , T )  is the envelope of amplitudes of this 
modulated wave. The length of an A wave may be computed from the 
Ginzburg-Landau equation. It is of interest to see what kinds of effects may be 
described by solutions lying in the full solution set of Ginzburg-Landau equations. 
The formation of solitons and chaos are two such effects which have been examined 
in a qualitative way in the works of Moon, Huerrc & Redekopp (1983) and 
Bretherton & Spiegel (1983). There are many recent works on defects in which the 
coefficients of the Ginzburg-Landau equations are selected so as to give apparent 
agreement between computer simulations and experiments. Obviously such 
qualitative studies go only part of the way, perhaps not even a part. What we need 
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FIGURE 3. Neutral curves for a = 1.1, m = 0.5,<, = 1.2, J *  = 1 .O, R, = 0.5, down-flow. ‘ U  ’ and ‘S ’ 
stand for ‘unstable’ and ‘stable’. The upper and the lower branches are well separated. surface 
tension is weak and the critical Reynolds number for the lower branch occurs at a = 0.09. 

are the explicit coefficients for the Ginzburg-Landau equation which applies to the 
experiment. With this information, we may hope to answer the question ‘where is the 
modulation’, and to look for structures which can be described as modulations of 
monochromatic waves. 

I n  this paper, we have computed the coefficients of the Ginzburg-Landau 
equations for different situations of interest and we make some comparisons with 
experiments. We have adopted an efficient numerical method, the singular value 
decomposition (SVD), to problems of bifurcation. SVD is the method of choice for 
the computation of the coefficients of amplitude equations and normal forms. This 
method is fully described in $4. Our comparison of Ginzburg-Landau theory with 
experiments is limited by the fact that the theory only applies to the small set of 
situations in which there are stable flows. Even in these cases, we see no evidence for 
modulations, so that our calculations are rather more in the way of an application 
of Ginzburg-Landau equations to the bifurcation of nonlinear monochromatic waves 
than to any kind of modulation of these waves. I n  this restricted application, we do 
see some agreement between the weakly nonlinear theory and experiment. In the 
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FIGURE 4. Neutral curves for a = 1.3, m = 0.5, 6, = 1.2, J *  = 2000, R, = 0.5, down-flow. ‘ U ’  and 
‘S’ stand for ‘unstable’ and ‘stable’. For this case of strong surface tension, the critical Reynolds 
number for the lower branch occurs at  a finite wavenumber a = 0.56. 

problem of water-lubricated pipelining, we have so far obtained many useful results 
from the study of the linearized theory of stability, with only limited success from 
nonlinear theories. 

2. Nonlinear evolution of axisymmetric disturbances in core-annular flows 
Two immiscible fluids are flowing inside a pipe of radius R,. The interface between 

the two fluids is perfectly cylindrical, r = R,. Fluid 1 is located in the core and fluid 
2 in the annulus. We are interested in the stability of this core-annular flow. 

It was shown by PCJ and CBJ that there are five independent controlling 
parameters : a, m, I&, J * and R, for horizontal core-annular flow and six for vertical 
core-annular flow: a ,  m, c,, J * ,  Iw, and F (defined below). Although a multi- 
parameter bifurcation analysis is possible, we restrict here our attention to the 
simplest case in which a single parameter is varied for fixed values of the other five. 
We prefer a parameter that we control in our experiments once the working fluids 
and the pipe are chosen. For horizontal flow, the Reynolds number R, defined in PCJ  
can be used as the bifurcation parameter. For vertical flow, however, the Reynolds 
number defined in CBJ is based on gravity and is more like a geometrical than a 
dynamical parameter. A better dynamical parameter is the forcing ratio F = f /p,g,  
where f = -&,/dz = -dZ?Jdz is the applied pressure gradient. In  this paper we 
shall use a different equivalent set of parameters incorporating both horizontal and 
vertical flows. 

We shall choose the magnitude of the centreline velocity IW(0)I as the velocity 
scale, R, the lengthscale and R,/IW(O)I the timescale. We define the following 
parameters : 

R a = >  
Rl’  
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def. 

[ w = [ w  = ' W ( 0 ) I  (Reynolds number). 
11 1 

gR3 3 3  

v: v: 
(Reynolds number based 011 gravity. [w - 2 -@la 

B 

This is different to  [ w = '  K3) used by C S J . )  

TR, 
J *  = ~ 

P 1 4  ' 

K =f* (ratio of driving forces in core and annulus), 

where (,u,p, u ,  g, T) = (viscosity, density, p/p.  gravity, interfacial tension), 

subscripts 1 and 2 refer to  fluids 1 and 2 respectively, and f is one and the same 
constant for both core and annulus. The cylindrical polar coordinate system is chosen 
such that  gravity is acting in the positive x-direction. We choose the Reynolds 
number R as our bifurcation parameter. When the density is matched, K = 1 and 
gravity does not enter the problem. R,, J *  are known constants once the working 
fluids and pipe radius are given, independent of flow conditions. 

The basic flow in dimensional form is given in (2.2) of CBJ. Thc velocity at the 
centreline of the pipe is 

f + P 2 9  

Using this relation we can show that, the parameter K can be expressed in terms of 
R, and R. To do this we nccd to distinguish between the cases W(0)  > 0 and W(0) < 0. 
For convenience, we will loosely refer to  flows with W(0)  > 0 as down-flows and 
W(0)  < 0 as up-flows, although mixed flows are also possible for both cases, 
depending on the magnitude of W(0) or f ,  as shown in CBJ. Then the dimensionless 
basic flow can be expressed a s :  

( a )  down-flow: W ( 0 )  > 0 

4ma3 R +  [CJ R,(a2- 1-2  l na )  
K(R) = 4rna3L?-[CJRg(n~+21na) ' (2 . la )  

(2.1 b )  
rnK(R) r2 

nzW(R)+a2- 1 +2(K(R)- 1) h a  
Wl(?-, R) = 1 - (0 < r < I), 

r 
a* - rz  - 2( W( R) - 1 )  In - 

mK( R) + a2 - 1 + 2(  K( R) - 1 )  In a 
U 

(1  < r < a) .  (2 . l c )  WJT, R) = 
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( b )  up-flow: W ( 0 )  < 0 

4ma3 R - [a R,(a2 - 1 - 2 In a) 

4ma3 R + [a R,(m + 2) In a )  ’ W(R) = (2.2a) 

mW(R) r2 

mW( R) + a* - 1 + 2( W( 08) - 1) In a 
W,(r,W) = - 1 + (0 < r < l), (2.26) 

... 
a 2 - r 2 - 2 ( ~ ( ~ ) -  i ) l n L  

mW( R) + a2 - 1 + 2( W( R) - 1) In a 
a 

WZ(T, R) = - (1 < r < a). (2.2c) 

In  the above formulae, the jump [.I is defined as 

n - n  = (*)1-(*)2. 

It is easy to see from these expressions that the up-flow velocity is formally the 
negative of the down-flow velocity except that  the parameter K(R) is different. 
However, down-flow and up-flow can be treated uniformly, using the velocity profile 
(2.1), with R, > 0 for down-flows and R, < 0 for up-flows since any up-flow can be 
obtained from a down-flow by simply reversing the direction of gravity. The basic 
flow (2.1) depends on the Reynolds number R through the parameter K(R). 

The perfect core-annular flow (2.1) can be realized if the controlling parameters 
fall in a certain range. Experiments in a vertical pipe with parameters in this range 
were described in CBJ. It is also possible to  realize the concentric core-annular flow 
in a horizontal pipe if the densities of oil and water are matched. Experiment 2 of 
Charles, Govier & Hodgson (1961), called ‘oil in water concentric’, can be regarded 
as an example of perfect core-annular flow in a horizontal pipe. 

Numerical experiments using linear theory have shown that, without exception, 
axisymmetric disturbances are most dangerous (see PCJ ; HJ ; CBJ). Therefore we 
restrict our analysis to  axisymmetric disturbances. Nevertheless, non-axisymmetric 
waves arise in practice. The photograph of ‘corkscrew’ waves exhibited in figure 2 
is a good example. These ‘corkscrew ’ waves can result from the instabilities due to 
finite non-axisymmetric disturbances. 

For axisymmetric finite disturbances, the disturbance velocity is of the form 
u = (u, 0, w) in the cylindrical coordinates ( r ,  0 ,  x )  and a( .)/a0 = 0. The full nonlinear 
evolution equations for u in dimensionless form are 

div u = 0, 

written for axisymmetric flow in cylindrical coordinates, where W is the basic flow 
and p is the perturbation pressure. These equations hold both in the core, 1 = 1 when 
0 < r < 1 +S(x,t) ,  and in the annulus, I = 2 when 1 +6(x,t)  < r < a. S(x , t )  is the 
dimensionless deviation of the interface from a perfect cylinder r = 1. The primes 
indicate the derivatives with respect to  r .  On the pipe wall r = a,  we have the no-slip 
condition 

and at the centre of the pipe, r = 0, u, w,p must be bounded. 
u = w = o ,  (2.4) 

At the interface, r = 1 +S(x, t )  we have the kinematic condition 

as as as as 
u =  -+(W+w1)- = -+ (W2+w, ) -  ax at a x i  at 
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and the continuity of velocity 
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uuns = nw+wn, = 0, (2.6) 
where the subscript S refers to the deformed interface r = 1 +S(x, t ) .  

The shear stress and normal stress balances on the interface are: 

nm{(i - 8:) (w + u,+ Wr) + ~ S ~ ( U , - W ~ ) } ~ ~  = 0, (2.7) 

where, the subscripts r , x  refer to the differentiations with respect to r and x 
respectively. 

To simplify these equations further, we can introduce a perturbation stream 
function $ in each region : 

Then the field equations can be reduced to a single equation for the stream function 
$ by eliminating pressure p :  

(2.9) 
where the operator 9 is defined as 

At r = a: 

At r = 0 :  
$ = $r = 0. 

$ = $, = 0. 

(2.10) 

(2.11) 

All the interface conditions can be expressed in terms of the perturbation stream 
function $, resulting in a system of differential equations for $l(r, x, t ) ,  1Cr2(r, x, t )  and 

To study weakly nonlinear stability, we expand the interfacial conditions around 
the unperturbed interface r = 1 and truncate the Taylor series a t  order O(S3). For this 
purpose we notice that from the linear theory, we have 

S(x, t ) .  

u - w - 8 .  (2.12) 

The resulting interface conditions up to the third order can be summarized as: 

Kinematic condition : 

Continuity of velocity : 
yi l ($t ,  4 = 21($t, 8) +Yl($t ,  61, ( 2 . 1 3 ~ )  
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Normal stress balance : 

In the above expressions, the jump [ ( - ) I  without subscript d refers to the jump 
evaluated at  the undeformed interface r = 1 and all the quantities are evaluated at  
r = 1 as well. The symbols 9, 22, %‘ refer to linear, quadratic and cubic differential 
operators respectively. The subscripts i indicate that all these operators are defined 
on the interface r = 1 only. These interfacial operators are listed in the Appendix to 
this paper. The reduced system (2.9), (2.10), (2.11) and (2.13) is used to derive the 
amplitude equation. 

3. Multiple scales, wave packets and Ginzburg-Landau equation 
The derivation of the amplitude equation near criticality using the techniques of 

multiple scales is now well known and the details can be found in Newel1 (1974) or 
Stewartson & Stuart (1971). We introduce a small perturbation parameter 8, defined 

E~ = Id,r(R-Rc)I (3.1) 
by 

where we have adopted the notation of Stewartson & Stuart (1971) for d,, 

d,, = Re{d,}, d ,  = -i - 
Rc; 

Here - iac is the linear complex growth rate for the linear instability of the basic flow 
and (a,,R,) is the point at the nose of the neutral curve. This critical point is a 
minimum on the upper branch of the neutral curve and a maximum on the lower 
branch. Here, ‘upper’ and ‘lower’ refer to the bifurcation parameter R, not the 
wavenumber a as traditionally assigned. The basic flow loses stability as R is 
increased past 58, on the upper branch. Here, d,, > 0 on the upper branch, and 
d,, < 0 on the lower branch. We may consider the first case d,, > 0, R > R, and then 
generalize to cover all the possibilities. 

Introduce the slow spatial and timescales 

6 = s (x-cg t ) ,  7 = €2t, (3.3a) 

where cg is the group velocity at criticality. These scales are appropriate for a wave 
packet centred at the nose of the neutral curve and the long-time behaviour of this 
wavetrain is examined in the frame moving with its group velocity cg. The 
perturbation stream function $ and the interface deviation 6 are assumed to be 
slowly varying functions of 6, r : 

I ll. + $(5,7 ; r ,  5, t ) ,  
s+6(g,7;X,t), 
a a  
at at g a g  a+ --+--ec -+$- 

J a a  a 
ax ax a g .  - + - + e -  

We then define the travelling wave factor of the amplitude 
def. 

E = exp [ia,(x-c,t)], 

(3.3b) 

(3.4) 
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where c, is the phase speed at criticality. For a wave packet centred around the 
critical state, we can assume that $ and 6 have the following form: 

$ = $o(r ,  5 , 7 )  +{$l(r, 5 , 7 ) E +  c.c.>+ {$2 ( r ,  5 , 7 )  E2 + c.c.>+ h.h.1 

6 = cY0(& 7 )  + {d1(<, 7) E + c.c.}  + { S2( 5 , 7 )  E2 + c.c.} + h. h., (3.5) 1 
where C.C. stands for complex conjugate and h.h. for higher harmonics. We assume 
that the fundamental wave $l(r, [,7) E is of order E and expansions in E yield 

(3.7) I and similarly, 61 = e811([, 7 )  + E 2 6 1 2 ( 5 ,  7 )  +E3813(5 ,  7 )  + o(E4), 

6, = e242(5, 7 )  + 0 ( E 4 ) ,  

so = 2dO2(5,7) + o(E4). 

Substituting the above expansions into the nonlinear systems of equations and 
identifying different orders ( k ,  n) o (ZP,  en)  results in a sequence of differential 
equations. To obtain the amplitude equation at lowest order, we only need to 
consider the k = 0 ,1 ,2  exponentials (3.4) and the n = 1 , 2 , 3  powers of the small 
parameter E .  

At order ( 1 , l )  we have the linear eigenvalue problem a t  criticality and, if we 
denote the eigenfunction at criticality to be v ( r ) ,  then 

where rll is a constant which can be expressed in terms of the value of tp at r = 1 and 
A ( [ , T )  is the slowly varying amplitude of the fundamental wave. The equations 
which arise a t  orders (0,2),  (2,2),  (1,2) support separated product solutions of the 
following type 

$o2(r7 L 7 )  = IA(5, 7 )  I2F(r), 

6 0 2 ( 5 , 7 )  = IM5,  7 )  l 2 7 O Z  ; 

7f922(., ‘$3 7 )  = A2(5, 7 )  G ( d ,  

6 2 2 ( 5 >  7 )  = A2(& 7 )  7 2 2  ; 
(3.9) 

Then a t  orders (1,2) and (1,3), we have 

Zl(H> 712)  = 9 Cg), 

where Zl is the linear Orr-Sommerfeld operator a t  criticality and 4, i = . . . , 5  are 
functions of rp(r), F ( r ) ,  G ( r )  and H ( r ) .  Applying the Fredholm alternative at order 
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(1,2),  we can obtain a formula determining the group velocity cg. At order (1 ,3) ,  the 
application of the Fredholm alternative yields the Ginzburg-Landau equation 
governing the amplitude A(6,7)  of the fundamental wave, 

(3.11) 

The term i3A2/i36 does not appear because its coefficient vanishes when the group 
velocity cg is properly expressed using the Fredholm alternative. The complementary 
part of the solution of the singular problem at order (1,2) has no effect on the final 
amplitude equation. The coefficient of the cubic term, 1, is called the first Landau 
constant and it depends on all the lower-order solutions. The coefficients a2, d ,  and 
I are complex in general and can be computed using the Fredholm alternative. For 
non-degenerate cases, the real part of a, is always positive for both the upper and the 
lower branch because the growth rate reaches a maximum at the critical point, the 
nose of the neutral curve (a,, = 0 if the neutral curve has a higher-order ( > 2) contact 
with [w = Wc). 

We may write the Ginzburg-Landau equation in a uniform form, valid for both 
the upper and lower branch of the neutral curves, 

(3.12) 

by taking proper account of the various sign possibilities offered by (3.1). The 
parameter sgn (d l r )  sgn (W- R,) measures the distance from the bifurcation threshold 
(linear growth or damping), sgn (d,,) sgn (W- [w,) (d, , /d, ,)  corresponds to the 
frequency shift due to the linear dispersion ; a,,, aZi, l,, 1, are associated with diffusion 
(azr > 0), dispersion, nonlinear saturation (1, > 0) and nonlinear renormalization of 
the frequency, respectively (the subscripts r, i refer to the real and imaginary parts 
of a coefficient). 

The Landau constant 1 depends on the normalization of the eigenvector ~ ( r )  of the 
spectral problem but is independent of the normalization of the adjoint eigenvector. 
If we use a different normalization for the eigenvector ~ ( r )  such that 

Q ) ( r ) ~ Q Q ) ( T ) , A ( 5 , 7 ) ~ q A ( 5 , 7 ) ,  

where q is any non-zero constant, we find, using (3.12), that 

(3.13) 

The Landau constant will become unique if a well-defined amplitude is introduced. 
This is especially important when pursuing higher-order Landau constants (Joseph 
& Sattinger 1972; Herbert 1980; Sen & Venkateswarlu 1983). In the lowest-order 
case, the Ginzburg-Landau equation (3.12), we can simply rescale the amplitude 
function A ( [ ,  7) 

(3.14) 

where 1 = 1, + il,, to get a Ginzburg-Landau equation with coefficients independent 

aA P A  d 
-- a, - = sgn (dlr) sgn (R - R,) ' A  - (sgn (1,) + iC,) JAI2A, 

of q :  

(3.15) 
a7 a62 d1r 
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where C,, = li/ll,l is a parameter independent of the normalization condition for 
v(r)* 

Another useful rescaled form of (3.13) can be obtained by introducing the 
following transformations : 

(3.16) 

After dropping the carets, we get 

The form (3.17) was first introduced by Moon, Huerre & Redekopp (1983) in their 
study of transition to  chaos in solutions of the Ginzburg-Landau equation. Since 
a2, > 0 we can replace sgn (a2,) by + 1.  

Equation (3.17) can be regarded as the canonical form of the Ginzburg-Landau 
equation. It admits a travelling wave solution of the form 

where A,,/3,,y0 are all real constants defined in terms of the coefficients of (3.17). 
The stability of the travelling-wave solution was studied by Newel1 (1974), Stuart & 
DiPrima (1978) and Moon (1982). Their analyses provide a unified treatment of the 
well-known Eckhaus instability and the Benjamin-Feir instability, and their results 
are also framed in terms of the coefficients of (3.17). When the real part of the Landau 
constant, l,, is positive, there are soliton-like solutions which have been discussed by 
Hocking & Stewartson (1972). These solutions have been called 'breather' by 
Holmes (1986). 

The spectral problem ( 1 , l )  and the boundary-value problems at orders (0,2), (2,2),  
and (1,2) which are needed to compute the coefficients obf the Ginzburg-Landau 
equation (3.12) are listed in Chen (1990). We note that a t  each order the interface 
parameter 7 can be eliminated. All the algebraic operations are carried out by the 
symbolic manipulator  REDUCE^ and independently checked by hand. An efficient 
method to  compute the coefficients of the Ginzburg-Landau equation is presented in 
the next section. Interested readers may apply the theory of modulated plane wave 
and soliton-like structures to the problem of water-lubricated pipelining using these 
coefficients. We see large-amplitude (bamboo) waves in our experiments, but they 
have average wavelengths of the same order as the monochromatic waves. We have 
concluded that our large waves are not modulated monochromatic waves and that 
they seem not to be described by Ginzburg-Landau equations. 

4. Singular value decomposition and its application to the numerical 
computation of the coefficients of amplitude equations and normal forms 

There are many universal equations used as model equations for the study of 
physical processes. These equations arise as an asymptotic solvability condition, 
which is a condition on the leading-order approximation to  the solution of a more 
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complicated set of equations which ensures that the later iterates of the 
approximation remain uniformly bounded. Examples of these equations are the 
Korteweg-de Vries equation and its generalizations, the Ginzburg-Landau equation 
and its generalizations and the Davey-Stewartson equations (Craik 1983 ; Newel1 
1985). For parallel shear flows, the coefficients of these model equations are in general 
given by very lengthy domain integrals expressing solvability conditions, commonly 
known as the Fredholm alternative. 

The Fredholm alternative requires that the inhomogeneous terms in the underlying 
system of differential equations, which contain the unknown coefficients, be 
orthogonal to the independent eigenvector spanning the null space of the adjoint 
system of differential equations. Typically the underlying system of the inho- 
mogeneous differential equation is discretized and solved as an inhomogeneous 
matrix-valued problem. We find that the solvability conditions which lead to values 
of the unknown coefficients are conveniently and economically computed by 
application of the singular value decomposition directly to the matrix formulation. 

The singular value decomposition (SVD) is one of the most important 
decompositions in matrix algebra and is widely used for statistics and for solving 
least-squares problems (see Golub & Van Loan 1983). The decomposition theorem 
can be stated as follows : each and every M x N complex valued matrix T can be 
reduced to diagonal form by unitary transformations U and V ,  

T = U diag [a,, c2, . . . , aN] P, (4.1) 

where a1 2 a2 2 , , , 2 a, 2 0 are real-valued scalars, called the singular values of T. 
Here U is an M x N column orthonormal matrix, V an N x N unitary matrix and VH 
is the Hermitian transpose of V. The columns of U and V are called the left and right 
singular vectors of T respectively. 

When M = N ,  T is a square matrix and 

UUH = UHU = 1, 

VVH = VHV = 1. 

Consider the generalized matrix eigenvalue problem 

( A - c B ) x = O ,  (4.4) 

where A ,  B are both square N x N complex matrices. Assume that c is an semi-simple 
eigenvalue of (4.4) with algebraic and geometric multiplicity K .  Then applying SVD 
to the matrix A-cB,  we get 

(4.5) A - cB = U diag [a,, a2, . . . , a,-,, 0, 0, . . . ) 01 VH, 

where a1 2 g2 2 . . . 2 aNPK > 0 are real constants. Let 

where uj)  u j ( j  = 1 , .  . . , N )  are the column vectors of matrices, U and V respectively. 
From (4.4) and (4.5) we see that diag[c,,cr, ,..., cN-K,O,O ,..., O]y = 0, where 
VHx = y and x is the eigenvector corresponding to the eigenvalue c .  Therefore we 
have 

(4.8) p x  = y = [o, 0, . . . 3 0, Y N - K + 1 ,  * * * ,  Y N ] ,  

where yN-K+l,. . . , y N  are K arbitrary constants. Then x = Vy is an eigenvector of 
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A-cB. We find, in this way, that the column vectors v j : j  = N - K +  1,  . . , , N ,  are the 
K independent eigenvectors corresponding to  c,  normalized with 

V: = 1 (j  = N - K +  1,  . . . , N ) ,  

where star * denotes the complex conjugate and superscript T for transpose. 
Similarly the column vectors uj ,  j = N -  K + 1, . . . , N .  are the K independent 
eigenvectors of the problem adjoint to (4.4) : 

(A - c B ) ~ x  = 0.  (4.9) 

They are the corresponding adjoint eigenvectors, normalized with 

u ~ u : =  1 ( j = N - K + l ,  ..., N ) .  

The application of SVD to solve the inhomogeneous system of algebraic equations 

( A - c B ) ~  =f (4.10) 

is straightforward. Suppose c is an semi-simple eigenvalue of (4.4) of multiplicity K .  
We use SVD to decompose A-cB in the form (4.5). We then compute 

diag [a,, a2, . . . , aN-K, 0, 0, . . . , 01 VHx = UHJ (4.1 1)  

The last K components of the vector on the left of (4.11) are identically zero and so 
must be those on the right. This defines the Fredholm alternative, i.e. the solvability 
conditions 

u : ~ = O  ( j = N - K + l ,  ..., N ) ,  (4.12) 

for the inhomogeneous matrix problem (4.10). The conditions (4.12) are necessary 
and sufficient for solvability of the inhomogeneous problem (4.10) in C when c is an 
eigenvalue of A relative to  B. 

The solution to the inhomogeneous equation (4.10) is given by 
N 

x = v,g+ c ppj ,  
j - N - K + l  

(4.13) 

where the N x  ( N - K )  matrix V, is given by 

v, = [v , ,  v,, . . . 3 V N - K ] ,  

with v l ,  2, . . . , vN-K given by (4.7) and the vector g has N - K  components given by 

g = [a;'u;fT, ai1u?fT, . . . > U G L K  U g - K P ] ,  

where the ui are those given by (4.6). The pi are constants and can be determined by 
K normalization conditions. 

Applications of the above SVD algorithm to bifurcation theory have been 
presented by Chen & Joseph (1990). Independently, Newell, Passot & Souli (1989) 
applied the same algorithm to the bifurcation study of convection at finite Rayleigh 
numbers in large containers. The algorithm takes advantage of the matrix 
formulations of the perturbation problems stated in 3 3. Specifically, the problems 
(0,2),  (2,2) are invertible and (1,2), (1,3) are singular. For these singular problems, a 
singular system of algebraic equations of the form (4.10) arises after discretization 
and the technique described above is readily applicable. For the spectral problem, we 
have 

where the matrix A-c, B and the vector p result from the discretization of the 

(A-c,B)p = 0 ,  
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RP, DHS Present 

c, 0.383 0.3831 
d ,  (0.168+i0.811) x (0.1683+i0.8113) x 
a2 0.187 +i0.0275 0.1867+i0.0275 
1 -30.3 +i173 -30.94+i172.83 

TABLE 1. Comparison of the coefficients of Ginzburg-Landau equation for one fluid plane 
Poiseuille flow, u, = 1.02, R, = 5772.22 

Orr-Sommerfeld operator at criticality and the eigenfunction cp(r), respectively. At 
orders (1,2) and (1,3), we have the following singular algebraic equations 

(A - cr B h = cg ) (4.14) 

(4.15) 

Assume a t  criticality c, is semi-simple with multiplicity K = 1. Then (4.14) can be 
solved by first using the solvability condition (4.12) to evaluate the group velocity 
cg and then using the formula (4.13) without the complementary part (/3, = 0) 
because of the fact that  the complementary part has no contribution to  the final 
amplitude equation. Application of the solvability condition (4.12) to (4.15) generates 
the coefficients of the Ginzburg-Landau equation (3.12) : 

a2 = - ~ : E / u x ,  
dl = - ~ : E / u ; G f f ,  

1 = u ~ E / u : f f >  
and ugff * 0. 

The above procedure was applied to  the problem of one-fluid plane Poiseuille flow 
and the computed values were compared with values obtained by Reynolds & Potter 
(1967) (RP)  and Davey, Hocking & Stewartson (1974) (DHS) using analytical 
formulae. In  order to compare the accuracy of the present scheme, the same 
normalization condition for the eigenvector as in R P  and DHS is used t o  make the 
Landau constant unique. The results are presented in table 1. It can be seen that the 
present algorithm gives accurate and reliable results and should find a wide range of 
applications in similar situations. The same algorithm is applied to the bifurcation 
analysis of core-annular flows and a Chebychev pseudo-spectral method is used for 
the discretizations of the differential equations. 

For all the calculations we performed for nonlinear stability of core-annular flows, 
we normalize the eigen-streamfunctions v1 and vZ with discrete L, norms such that 
1 1 ~ 1 1 1 2  + 11cp21I2 = 1.  Most of our results are summarized in tables 2-8. 

5. Nonlinear stability of core-annular flows 
The nature of the bifurcation of core-annular flows is determined by the real part 

of the Landau constants 1 in (3.12). If 1, > 0, the bifurcation is supercritical and a 
finite-amplitude equilibrium solution exists. On the other hand, if 1, < 0, the 
bifurcation is subcritical; the bifurcating solution of (3.12) will burst in finite time 
and a higher-order theory is needed (Hocking, Stewartson & Stuart 1972). 

The coefficients of Ginzburg-Landau equations for different parameters are listed 
in tables 2-7. Since we are mainly interested in the direction of the bifurcations, we 
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m 

0.9 
0.85 
0.8 
0.7 
0.5 
0.2 
0.1 

a, 
2.99 
3.2 
3.3 
3.6 
9.1 
5.8 
4.4 

(a) Upper branch of the neutral curve 

Rc 
175.033 
162.23 
150.71 
128.72 
55.61 
16.24 
9.985 

Cd 
5.0054 
5.0375 
4.9972 
4.3832 

-0.7895 
- 1.0769 
- 0.4983 

sgn (0 Cn 
+ - 11.4151 
+ - 197.3133 
- -6.7538 
- - 1.2640 

- 1.3827 
- -0.8101 
- 

- 0.1714 

( b )  Lower branch of the neutral curve 

0.9 0.09 5.6047 7 .O + -5.6021 
0.85 0.06 4.7010 4.3030 + - 3.9426 
0.8 0.04 4.0821 6.7899 + -5.5512 
0.7 0.03 3.3751 42.8759 + -31.0698 
0.5 0.05 2.78 23.3539 - 20.4787 
0.2 0.029 2.6341 245.4459 - 254.3165 

72.82 15 0.1 0.06 2.707 71.4207 - 

TABLE 2. Coefficients of GL equations for a = 1.25, C2 = 1, J *  = 1, down-flow 

(a) Upper branch of the neutral curve 

5 2  a, 4 Cd sgn (1,) en 
1 .o 3.6 128.72 4.3832 - 
1.2 1.95 1592.3 4.1387 + 0.1952 
1.4 2.7 1060.74 1.2524 + -0.1585 
1.6 3.28 791.31 1.0583 + -0.2605 

- 1.2640 

( b )  Lower branch of the neutral curve 

1 .o 0.03 3.3751 42.8759 + - 3 1.0698 
3.1830 35.5138 + - 19.6098 

1.4 0.01 3.071 1.5466 + - 1.6507 
1.6 0.01 2.93 1.4688 + - 1.47 10 

1.2 0.04 

TABLE 3. Coefficients of GL equations for a = 1.25, m = 0.7, J *  = 1, R, = 0.5, down-flow 

(a) Upper branch of the neutral curve 

6 a c  R Cd sgn (1,) Cn 
- 1.3827 1 .o 9.1 55.61 -0.7895 - 

1.2 1.9 543.6 11.2156 + 0.7736 
1.4 2.71 568.68 1.6348 + -0.1513 
1.6 3.1 469.25 1.4034 + -0.4332 

( b )  Lower branch of the  neutral curve 

20.4787 1 .o 0.05 2.78 23.3539 - 
1.2 0.08 2.523 14.9791 - 13.8764 
1.4 0.04 2.3228 61.18 - 51.4451 
1.6 0.08 2.1801 9.2344 - 8.4382 

TABLE 4. Coefficients of GL equations for a = 1.25, m = 0.5, J *  = 1, [w, = 0.5, down-flow 
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5, 
0.5 
0.8 
1 .o 
1.2 
1.4 
1.5 
1.6 

a, 
7.26 
8.91 

24.77 
24.36 
24.05 
23.92 
23.82 

(a) Upper branch of the neutral curve 

Rc Cd 
140.871 5.7827 
235.084 4.7197 
156.451 1.1180 
136.034 1.1141 
121.916 1.0833 
116.355 1.0514 
1 11.522 1.0179 

sgn (1,) Cn 
- - 2.4054 
- -0.8352 
- 5.2623 
- 12.0131 
- 273.0102 
+ 44.9198 
+ 24.6314 

(b) Lower branch of the neutral curve 

0.5 0.1 1.08 - 11.9596 - - 7.2965 
0.8 0.15 1.051 - 9.3205 - -6.5107 
1 .o 0.05 1.044 - 58.0376 - -28.6788 
1.2 0.09 1.034 - 15.1812 - - 10.8792 
1.4 0.14 1.0202 - 9.5561 - -7.2649 
1.5 0.06 1.019 - 21.2016 - -0.8362 
1.6 0.1 1.0 -23.6511 - - 14.7862 

TABLE 5. Coefficients of GL equations for a = 1.1, m = 0.5, J *  = 1, R, = 0.5, down-flow 

(a) Upper branch of the neutral curve 

52. R C  Cd Cn 
0.5 
0.6 
0.7 
0.8 
1 .o 
1.2 
1.4 
1.5 
1.6 
1.8 

0.5 
0.6 
0.7 
0.8 
1 .o 
1.2 
1.4 
1.5 
1.6 
1.8 

2.03 
2.16 
2.31 
2.53 
3.56 
7.67 
8.80 
9.55 

10.36 
11.91 

0.26 
0.24 
0.22 
0.22 
0.20 
0.16 
0.1 
0.1 1 
0.1 1 
0.09 

619.53 
706.80 
824.45 
994.30 

1490.16 
2025.59 
1700.47 
1537.17 
1390.44 
1162.06 

-0.2407 
-0.1 143 

0.0196 
0.1235 
0.3926 

-0.2422 
-0.4030 
-0.5902 
-0.8053 
-1.1776 

(b )  Lower branch of the neutral curve 

47.91 
47.70 
47.50 
47.30 
46.92 
46.464 
46.22 
46.053 
45.89 
45.56 

-5.9844 
- 7.0583 
-8.2410 
-7.7273 
- 8.3867 
- 11.6444 
-21.4375 
- 16.9091 
- 16.0870 
- 18.9375 

- 1.7274 
- 2.61 85 
-6.3772 
- 5.0004 
-0.3405 
-6.9622 
-2.6566 

-34.1854 
0.8573 
1.9673 

-0.7709 
-0.8770 
-0.9921 
-0.9799 
- 1.0912 
- 1.4088 
-2.2710 
- 2.0493 
- 2.0335 
- 2.47 19 

TABLE 6. Coefficients of GL equations for a = 1.1, m = 0.5, J *  = 2000, R, = 0.5, down-flow 

have only listed the values of the critical states (ac, Rc(ac)), sgn (Z,), C, and G, in these 
tables, corresponding to the canonical form (3.17). The values of c,, cg ,  d , ,  a2 and 1 are 
documented in Chen (1990). The first thing to look at in these tables is the next to 
the last column labelled sgn(1,). A plus sign here means that the bifurcation is 
supercritical, a minus sign that it is subcritical. 

The cases studied in tables 2-7 explore the general features of bifurcation of 
20 FLM 227 
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t 
0.5 
1 .o 
1.2 
1.5 
2.0 
3.0 
4.5 

0.5 
1 .o 
1.2 
1.5 
2.0 
3.0 
4.5 

1.55 
2.63 
4.18 
3.87 
6.81 

13.46 
15.50 

(a)  Upper branch of the neutral curve 

R C  

1347.87 
2701.37 
7126.05 
6503.75 
3202.31 
1381.32 
990.06 

c* sgn ( 4 )  
-0.7492 + 
-0.3912 + 

0.0020 - 

0.6476 - 
0.1169 - 

- 1.3575 
-1.1833 + 

- 

( b )  Lower branch of the neutral curve 

0.52 150.26 -0.7910 + 
0.51 145.26 -0.7624 + 
0.503 143.47 -0.7740 + 
0.50 140.95 -0.7473 + 
0.49 137.17 -0.7418 + 
0.47 130.79 -0.7500 + 
0.45 123.25 -0.7345 + 

c n  
1.0261 
0.1679 

104.0321 
-0.3164 
- 1.9525 
-5.8459 

0.2410 

0.5327 
0.5031 
0.5048 
0.4812 
0.4657 
0.4516 
0.4175 

TABLE 7 .  Coefficients of GL equations for a = 1 . 1 ,  m = 0.9, J *  = 2000, [w, = 0.5, down-flow 

core-annular flow. The cases with parameters corresponding to some of the 
experiments of Charles et al. (1961) and BCJ are discussed in $8. As mentioned 
earlier, our bifurcation analysis is only valid near the nose of the neutral curves. This 
means that such analysis is applicable when the upper and lower branches of the 
neutral curve are separated, i.e. there exists an interval of Reynolds numbers within 
which core-annular flow is linearly stable, as in figures 3 and 4. In  other words, we can 
only study those cases where linearly stable core-annular flow is possible. Figure 5 
shows the disposition of subcritical and supercritical solutions in the presence of 
upper and lower branches of neutral curves. PCJ, BCJ have shown that only when 
the parameters a ,  m, 5, J *  fall in a certain subspace of the parameter space is such 
stable core-annular flow possible. Typically, there is a ‘thin lubricating layer effect ’ : 
small values of a-  1 = R,/R,- 1 stabilize core-annular flow. It is also shown by Hu 
et al. (1990), that if the oil is too viscous, m = ,u2/,ul 6 1, stable core-annular flow 
cannot be achieved. We have thus restricted our studies in tables 2-7 to those values 
of a and m, typically small values of a-  1 and values of m of order lop1, with which 
linearly stable core-annular flows are possible. 

The parameter IR,I = 0.5 is used for all the cases considered in tables 2-7. This 
parameter enters into the equations only as a product (Q  - 1) R,, and hence plays no 
role when the densities of the two fluids are the same, 5, = 1. We can vary the effect 
of effective gravity ([, - 1) R, by varying the value of I& for a fixed value of R,. 

We are going to  divide the tables into two groups according to  the value of 
capillary number J * .  The first group is for J *  = 1, corresponding to weak capillary 
effects typical for our experiments. Thc results for J* = 1 are summarized in tables 
2-5. The second group is for J *  = 2000, corresponding to strong capillary effects. 
This case is of interest for low-viscosity cores for which the capillary number is large. 
There is an important difference in the lower branch of the neutral curves when 
J * = 1 and J * = 2000 that is evident from a comparison of figures 3 and 4. When 
J *  = 1, the maximum value of R(a)  on the lower branch of the neutral curve occurs 
near a = 0. When J *  = 2000, the maximum value of R(a)  on the lower branch of the 
neutral curve occurs at a finite value near 0.6. 
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/ IAJ (amplitude of the bifurcating solution) 

FIGURE 5. Neutral curves for the rare set of conditions in which PCAF can be stable. Bifurcation 
theory applies for R near to R,, or RcL. When R > R,. and IAl > 0 then the flow is supercritical. 
When R < R,, and > 0, then the flow is supercritical (the shaded regions are supercritical). 
When R,, < R < R,, and 1.11 > 0, the flow is subcritical. 

The lower branch of the neutral curve for J * = 1 has a region in the neighbourhood 
of (a, R(a) )  = (0, R(0)) in which the analysis of long waves may be relevant. I n  the 
case of very long waves, it may be impossible to  obtain an amplitude equation of the 
Ginzburg-Landau type. The critical wavenumber a t  the nose of the neutral curve 
tends to zero so that the wave you are supposed to modulate is already hugely long. 
(We are indebted to  A. Frenkel for this remark. He noted that to  have a 
Ginzburg-Landau equation, the sideband width Au ought to be small relative to  the 
wavenumber a on which it is centred.) There are other types of lubrication-like 
approximations describing waves of slow variation rather than the slowly varying 
envelope of modulated waves as in the Ginzburg-Landau equation. In  fact Frenkel 
et al. (1987) derived an amplitude equation of the KuramotAivashinsky type from 
an analysis of long waves. Frenkel (private communication) found a condition in 
which the motions of the core and of the annulus can be coupled in the 
Kuramoto-Sivashinsky system leading to an additional linear term which dispersed 
and dissipates waves. A clcar exposition of this work, based on a systematic 
expansion in powers of a small parameter together with numerical solutions of 
the KuramotoSivashinsky-Frenkel equation, has been given by Papageorgiou, 
Maldarelli & Rumschitzki (1990). 

We are concerned that the neglect of inertia p(u.V)  u in nonlinear theories for long 
waves can lead to large errors in the case when the wavenumber d of the maximum 
growth rate is bounded strictly away from zero. A monochromatic linear wave 
proportional to exp [id(x - ct)] undergoes repeated multiplication leading to rapid 
growth of higher harmonics, which eventually may be cut off by dispersion and 
dissipation. This type of effect is removed from the nonlinear long-wave theories by 
assumption. 

20-2 
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6. Small capillary numbers 
When the capillary parameter J * is small, the maximum growth rate for capillary 

instability cannot be greatly different from the value u = 0 which maximizes R(a)  on 
the lower branch of the neutral curve shown in figure 3. We have selected the value 
J *  = 1 to represent weak surface tension. Our results are contained in the coefficients 
displayed in tables 2-5 and in figure 3. Tables 2 4  are for u = 1.25, corresponding to 
water/oil volume ratio Vw/Vo = u2- 1 = 0.5025. The coefficients of the Ginzburg- 
Landau equations in the case in which the densities of the oil and the water are 
the same, f;, = 1, are exhibited in table 2. We know from energy analysis of the linear 
problem that PCAF in the region above the upper branch of the neutral curve is 
unstable to interfacial friction (see HJ, BCJ). We expect that wavy core flow will 
arise from this instability. The entries in table 2 show that the bifurcating waves are 
supercritical when the viscosity of the lubricating annulus fluid is close to that of the 
core fluid, m 2 0.85, and subcritical when m < 0.8. Stable small-amplitude shear 
waves are expected in the supercritical case and something else far from PCAF, 
perhaps large waves, in the subcritical case. Small viscosity difference can lead to 
stable wavy flow a t  the interface. 

Turning next to the lower branch of the neutral curve, which is prey to modified 
capillary instability, we note that the bifurcation is supercritical when the viscosity 
ratio ,u2/,ul = m 2 0.7 and subcritical when m < 0.5. We expect to see small- 
amplitude capillary waves in the supercritical case. This can be interpreted to mean 
that linear capillary instability is nonlinearly shear stabilized when the viscosities of 
the fluids are close, m 2 0.7. The flows which bifurcate subcritically (m < 0.5) should 
be far from PCAF. These more viscous cores probably break into slugs or bubbles far 
from PCAF connected by thin threads. The results in table 2 indicate that when the 
densities of the fluids are matched, a large viscosity difference leads to subcritical 
bifurcation while a small viscosity difference can result in supercritical bifurcation. 

We study next the effects of changing the density of the lubricant for the same 
fixed u = 1.25. If the lubricant is heavier than the core, say water and oil, Q > 1. Can 
we change the nature of the bifurcations, i.e. change the dynamics of lubrication, by 
varying c,? Table 3 shows that for fluids with a viscosity ratio ,u2/,u1 = m = 0.7, the 
bifurcation of the upper branch for c2 = 1 can be changed from subcritical to 
supercritical by increasing the density ratio to c2 = 1.2. We can stabilize small- 
amplitude bifurcating waves driven by interfacial friction by increasing the density 
of the lubricant. The change of density does not destabilize the supercritical 
bifurcating solution on the lower branch. Table 4 gives results for a smaller viscosity 
ratio m = 0.5. The same disposition of bifurcations holds also when m = 0.2. The 
only difference is that the wavy solutions below the lower branch of the neutral curve 
are all stable when the viscosity ratio is large, m = 0.7 and are all unstable when 
m = 0.5 and m = 0.2. These results suggest that for a given surface tension, the 
bifurcation of the upper branch is sensitive to changes in the density ratio, while the 
lower branch is sensitive to changes of the viscosity ratio, but not to changes of the 
density ratio. 

In table 5 we look at fluids with a viscosity ratio m = 0.5 for the effects of varying 
density ratios c2. The difference here is that there is much less water: a = 1.1 and 
water to oil volume ratio Vw/V, = u2- 1 = 0.21 ; there is five times more oil than 
water. This is a thin lubricating layer. The bifurcation of the periodic solution from 
the lower branch of the neutral curve is subcritical for c2 between 0.5 and 1.6, as in 
the case a = 1.25. The bifurcation of a periodic solution from the upper branch of the 



Lubricated pipelining : stability of core-annular $ow. Part 4 607 

neutral curve can be changed from subcritical to supercritical by increasing the 
density of the lubricant. However, the transition density ratio for a = 1.1 occurs 
between cz = 1.4 and cZ = 1.5, a larger transition ratio than for a = 1.25, m = 0.5, 
which is between Cz = 1.0 and 5, = 1.2 (see table 4). Suppose the density ratio of the 
fluids is between 1.2 and 1.5, 1.2 < cZ < 1.5, and the viscosity ratio is m = 0.5. If the 
lubricating layer is relatively thick, a = 1.25, then the upper branch will bifurcate 
supercritically. However, if the lubricating layer is thin, say a = 1.1,  then the upper 
branch will bifurcate subcritically. This indicates some kind of nonlinear break-down 
of the ' thin-layer effect '. In order to achieve a linearly stable coreannular flow, we 
need to have a thin lubricating layer. However, if the layer is too thin, the bifurcation 
of the upper branch will become subcritical. The exact physical implication of this 
subcritical bifurcation is not clear to us. However, in our experiments (BCJ), in a 
region where the superficial oil velocity is large and superficial water velocity is 
relatively small, corresponding to very small values of a ,  oil sticks to the pipe wall. 

The role density difference plays in the stability of core-annular flow is interesting. 
The effects of density difference on the neutral stability curves of coreannular flow 
were studied in CBJ. The calculations of CBJ as well as the weakly nonlinear ones 
presented here show that the upper branch of the neutral curves are more sensitive 
to the changes of density ratio cz than the lower branch. For the upper branch, the 
Reynolds number is large and the effect of the effective gravity [a R, is negligible. 
The only place that the density ratio Cz enters into the equations is through the jump 
in the perturbation pressure in the normal stress balance equation at the interface, 
(2.8). Relatively small changes in cz can cause a large perturbation of the pressure 
jump when the Reynolds number is large. This changes the stability of the upper 
branch considerably. When the Reynolds number is large, the pressure jump is 
basically equal to the jump in the inertia of the fluids which is large in this case. On 
the other hand, when the Reynolds number is small, density stratification manifests 
itself mainly through the effective gravity term [a R, in the basic flow. This term is 
not too large for the small pipes we have considered and the change of the lower 
branch is relatively small for the moderate changes in fl,. 

We have also computed a few cases of up-flow, for a = 1.1,  with R, = -0.5. After 
comparing these results with relevant entries in the previous tables, we found that 
there are only slight changes in the values of coefficients and the type of bifurcations 
remain the same for both upper branch and lower branch. This is expected for the 
case of not too large value of IR,I and fixed value of a. Effective gravity 10 R, has 
little effect on the stability, and particularly for the upper branch, there is almost no 
difference between up and down flows for both the neutral curves and bifurcations. 
For the lower branch, there is a slight shift of the neutral curves between the up and 
down flows, but the type of bifurcation is not affected. The large differences between 
up and down flows at moderate flow rates observed in experiments are due to the 
accumulation of oil in down flow and its depletion in up flow due to buoyancy. The 
water fraction is therefore greater and a is larger in up than in down flow. 

7. Large capillary numbers 
As the surface tension parameter J * is increased, the wavenumber corresponding 

to the most unstable mode of the lower branch tends to the capillary limit a = 0.69. 
CBJ showed that linearly stable CAF is possible only when the lubricating fluid is 
heavy, 5% is large enough. The neutral curve for a = 1.3, m = 0.5, J* = 2000, 
R, = 0.5 and c2 = 1.2 is shown in figure 4. For this set of parameters a ,  m, J*, R,, 
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linearly stable CAE’ is only possible when c2 2 1.2. A heavy lubricant will stabilize 
capillary instability and the critical Reynolds number below which the flow is 
unstable to capillarity is decreased as c2 is increased. However, increasing the density 
of the lubricant does not appear to change the nature of the bifurcation from the 
capillary branch, which is subcritical a t  least for the case a = 1.3, m = 0.5 and 
J *  = 2000 which we calculated. The subcritical bifurcation here may lead to the 
capillary break-up of the oil core and the formation of oil slugs and bubbles. 
Bifurcations from the upper branch when (a,m, J * )  = (1.3,0.5,2000) are always 
supercritical, leading to  the finite travelling waves a t  the interface. 

The second example of large capillary number is exhibited in table 6 for the 
parameters a = 1.1, m = 0.5, J *  = 2000 and R, = 0.5. Linearly stable CAF is 
possible for a much wider range of 6, because of the stabilization effect of the thin 
lubricating layer. However, the bifurcation of the capillary branch remains 
subcritical for all the density ratios considered. These results for J * = 2000 and those 
for J *  = 1 show that the bifurcation of the lower branch is insensitive to the changes 
in density difference and water fraction. For the upper branch, from table 6 ( a ) ,  we 
see that there is a range of density ratios within which the bifurcation of the upper 
branch is subcritical. Outside of this range, i.e. for small and large density ratios, the 
bifurcation becomes supercritical. This result also holds when J *  = 1,  as shown in 
$6, but the subcritical range is different. The breakdown of ‘thin layer effect’ for 
J *  = 1 also occurs for J *  = 2000. 

How do changes in the viscosity ratio m change the bifurcations of coreannular 
flows when J *  is large? Table 7 gives results for a = 1.1, m = 0.9, J *  = 2000, 
R, = 0.5 and down-flow. The remarkable difference between m = 0.9 and m = 0.5 is 
that for the smaller viscosity stratification m = 0.9, the lower capillary branch 
bifurcates supercritically for all the density ratios considered, even for lighter 
lubricant, 5, < 1. This means that finite-amplitude capillary waves are saturated 
nonlinearly by the action of a small viscosity difference, m near one. This nonlinear 
saturation by small viscosity difference also occurs when J *  is small (see $6). For the 
upper branch, there is still a range of density ratios within which the bifurcation is 
subcritical, as in the case of weak capillarity. 

8. Experiments 
In the somewhat restricted situation of Hopf bifurcation of strictly periodic waves 

at  a simple eigenvalue, we could say that the supercritical waves are stable whilst the 
subcritical waves are unstable. To compare bifurcation analysis with experiments, 
we must first identify a flow with a critical Reynolds number R,. There are then 
upper and lower critical values of Reynolds number, R,, and R,, (see figure 5). If the 
operating Reynolds number R is in a region of instability of PCAF near criticality, 
then supercritical bifurcating solutions are in this same region of instability of PCAF. 
Under restrictive hypotheses, the supercritical bifurcating solution is stable. We 
say that bifurcation theory is consistent with experiments when the observed 
supercritical solution is just a small perturbation of PCAF (we would need to  
compare details of the bifurcated solution with experiments to test the theory, and 
we have not done this). On the other hand, if the bifurcation is subcritical when R is 
in the unstable region for PCAF (shaded region in figure 5), then the bifurcating 
solution is unstable when its amplitude is small, but may recover stability for large 
amplitudes. In this case the observed flows would be far from PCAF. If R is in a 
region of stability of PCAF, R,, < R < R,,, and both bifurcations are supercritical, 
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we might expect to see stable PCAF, stable both to small and finite disturbances. If, 
on the other hand, one or both bifurcations are subcritical and R,, < R < R,,, then 
the conclusion of the bifurcation theory is ambiguous. Without ambiguity, we may 
conclude that if a flow different to  stable PCAF is seen in the linear stable range, then 
one or both bifurcations should be subcritical with large deviations (with an 
ambiguous ‘ large ’) from PCAF. 

In table 8, we have compared bifurcation theory with experiments. The 
comparisons exhibited in rows 1 and 2 can be said to show agreements between 
theory and experiments. Less can be concluded from rows 3-7, but in all cases, there 
is no obvious inconsistency between experiments and bifurcation theory. 

We wish to draw attention to  a possible interpretation of bamboo waves as a 
structure far from PCAF. When the bamboo waves are large, they are clearly far 
from PCAF. In one interpretation, bamboo waves arise from shear stabilization of 
capillary instability which in pure form leads to spheres of oil, far from PCAF. There 
is no stable capillary figure close to a cylinder. 

We turn next to a discussion of theory and experiments in which the entries in 
table 8 are explained in a wider context. We first consider the experiment labelled as 
2 in figure 3 of the paper by Charles et al. (1961) (reproduced as figure 1 in PCJ and 
figure 6 in HJ), one sees a slightly perturbed PCAF which is labelled as ‘oil in water 
concentric’. The neutral curve for this case is shown as figure 13 in PCJ. The 
operating condition, a = 1.21, J *  = 2102, m = 0.0532, R = 138.6, is just above the 
nose (a,, R,) = (2.24,138.2) of the upper neutral curve, hence PCAF is linearly 
unstable. For this case the coefficients of the amplitude equation (3.17) are 

C, = - 1.3967, C, = -0.02393, 

Since 1, > 0, the bifurcation is supercritical and only a small perturbation of PCAF 
is expected and is realized. The remaining ten cases corresponding to figure 3 of 
Charles et al. (1961), are either always unstable or with operating conditions 
(operating Reynolds numbers) far away from the critical conditions (see PCJ and 
Chen (1990) for the neutral curves). Thus bifurcation analysis cannot be applied. 

The analysis of $06, 7 may be applied to  situations when the two fluids involved 
have similar physical properties. CBJ designed an experiment to  test the validity of 
the linear theory. The fluids and the size of pipe were chosen with the guidance of the 
linear theory. They successfully realized globally stable perfect coreannular flow in 
the free-fall apparatus and showed perfect agreement between linear theory and their 
experiment. The neutral curve for this experiment is given in figure 20 of CBJ. The 
experiment falls in the linearly stable region and is not too far away from the critical 
condition of the lower branch. After converting the parameters to the ones used in 
the present paper, we have, for the experiment, 

sign (1,) = + 1.  

a = 1.86, m = 0.33, = 1.4, J *  = 2.26, R, = 21.31, R = 8.22. 

The bifurcation near the critical state of the lower branch, (ac, R,) = (0.04,6.31), is 
supercritical : 

C, = 89.65, C, = 21.31, sign (I,) = + 1. 

The upper branch, although far away with (a,, R,) = (0.5,153.0), also bifurcates 
supercritically. Perfect coreannular flow was observed in the experiment and i t  
agrees with both the linear and nonlinear theory. 

The difficulties one encounters when applying the above bifurcation theory to  the 
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Experiment Operating R sgn (&, sgn ( Z J L  Observations and comments 

Charles et al. 

No. 2 

CBJ 

Free fall 

R z R,, + I  

R,, < R < Re,, + 1  + 1  

BCJ 

E2, up flow 

BCJ 

R ' R c ,  - 1  

R R,, - 1  

R,, < Ft < R,,, - 1  - 1  

&, < R < Re,, - 1  - 1  

R 9 Re" + 1  

F1, up-flow 

BCJ 

No. 2, down-flow 

BCJ 

No. 3, down-flow 

BCJ 

No. 4, down-flow 

The bifurcation is supercritical 
and the flow is near to PCAF 

PCAF is observed. 
Perfect agreement between 
experiments and linear and 
nonlinear theory 

far from PCAF 
Bamboo waves, a structure 

Oil sticks to  the pipe wall 

Intermittent corkscrew waves 
are observed 

Intermittent corkscrew waves 
are observed 

Disturbed bamboo waves, 
perhaps not too far from 
PCAF are observed 

TABLE 8. Comparison of bifurcation theory and experiments. Among many experiment,s, there are 
only a small number to  which the Oinzburg-Landau theory might apply. They are listed in this 
table. sgn ( I , )  = + 1 for supercritical, sgn (I,) = - 1 for subcritical bifurcations. Subscripts u and 
L are referred to  upper and lower branch respectively. 

practical situations of lubricated pipelining lie in the fact that, when the viscosity 
ratio of water to oil, m = pz/pl ,  is very small, say m of order which is typical for 
crude oil and water, PCAF is always linearly unstable and thus there is no critical 
state for bifurcation analysis. This restriction severely limited the parameter ranges 
to which we could apply such analysis. 

The experiments of BCJ revealed many interesting features of nonlinear waves in 
lubricated pipelining. For these experiments, we have 

m = 1.66 x lop3, c2 = 1.0994, J * = 0.1019, R, = 2.4. 

For this value of m, linearly CAP can be obtained only when a is very small (say 
a < 1.15). The flow charts in BCJ show how different flow regimes change with respect 
to the superficial velocities of water and oil, V,, V,. In  the up-flow chart, there is a 
region in the V,, plane called 'wavy CAF ', which corresponds to  the bamboo waves 
observed (see figure 1 ) .  For the points marked 1-9, and D2, E3 in the bamboo wave 
regime (BCJ), the upper and lower neutral curves are connected and they are linearly 
unstable a t  all Reynolds numbers. This is because of thc large values of a for these 
points. For point E2, a = 1.12, [w = 1.2283. Thc upper and lower branches of the 
neutral curves are separated. The experimental line R = 1.2283 is cutting through 
the upper branch: linearly unstable and is not too far away from the nose of the 
neutral curve (ac,&) = (2.41,0.501). The bifurcaton at this point is found to be 
subcritical with 

C, = -0.9657, C, = 0.9623, sign ( I , )  = - 1. 
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The subcritical bifurcation indicates that  in order to achieve the experimentally 
observed stable bamboo waves a t  E2, higher-order theory is needed. 

The examples discussed above show that the current lowest-order bifurcation 
theory is hopeless for the prediction of bamboo waves observed by BCJ, either 
because the corresponding linear theory predicts linear instability for all Reynolds 
numbers, or because of the subcriticality of the bifurcation. for the latter case, we 
may supplement a higher-order theory. Nevertheless, the above examples suggest 
that bamboo waves are flows far from PCAF and fully numerical simulations may be 
required €or their characterizations. 

The flow regime called ‘oil sticking on the wall’ in the up-flow chart is a region 
where V, is small and V, is large. In  this region, there is little water in the pipe and 
thus the value of a is small. We found that for these small values of a, the upper and 
lower branch of the neutral curves are separated, owing to the strong stabilization 
of the thin lubricating layer (‘thin-layer effect ’). The experimental lines R = RE cut 
through the upper branch. However, the bifurcations of the upper branch are found 
to be all subcritical. This is the nonlinear break-down of the ‘thin-layer effect’ 
discussed in $6. An example in this region is the point F1, where a = 1.03, 
R = 2.2838. The nose of the upper branch is (ac, R,) = (12.0,2.04) and we have a 
subcritical bifurcation with 

C,  = -0.7556, 

Whether these subcritical bifurcations correlate to the losses of lubrication observed 
in the experiments remains to be resolved, either by higher-order theory or numerical 
solution. Obviously the phenomena observed in the experiments are very nonlinear. 

Turning now to the down-flow chart of BCJ. The points 2 and 3 fall in a region 
called ‘disturbed CAF’, corresponding to ‘corkscrew’ waves as in figure 2. The linear 
theory predicts that 2 and 3 are linearly stable to  infinitesimal disturbances, 
axisymmetric and non-axisymmetric. The bifurcations of the upper and lower 
branches are all subcritical. It is obvious that these ‘corkscrew’ waves are non- 
axisymmetric and due to finite non-axisymmetric disturbances which are not 
considered in this paper. 

Point 4 in the down-flow chart falls in a region called ‘disturbed CAF’, which 
corresponds to axisymmetric, very short stem bamboo waves. For point 4, a = 1.09, 
R = 9.59, the upper and lower branch are separated, and R = 9.59 cuts through the 
upper branch. I n  this case, the bifurcation at the nose of upper branch (ac, R,) = (3.6, 
1.36) is supercritical with 

C,, = -0.5718, 

However, the experimental point R = 9.59 is far away from the nose and the 
information on the bifurcation a t  the nose may be not relevant to  the observed 
equilibrium waves. 

A summary of the results testing the bifurcation theory is given in table 8. It is 
evident from the above discussions that the usefulness of the bifurcation analysis is 
very restricted. For the situations of practical interest, m < 1, the bifurcation 
analysis is either not applicable or fails to provide useful information relevant to  the 
experimentally observed phenomena. On the other hand, in all these cases we have 
obtained useful information from the study of the linear theory of stability. It seems 
to us that, unlike linear theory, weakly nonlinear theory is valid only in a too 
narrowly defined set of conditions to  be of much use in our problem. Perhaps direct 
numerical approaches have more to  offer. 

C, = -0.1479, sign ( I , )  = - 1. 

Cd = 0.6590, sign (1,) = + 1. 
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9. Summary and discussion 
1. There are regions of parameter space in which PCAF is possible. For these 

parameters we can write two Ginzburg-Landau equations, one near the minimum 
point of the upper branch and another near the maximum point of the lower branch. 
At the upper branch, PCAF loses stability to waves generated by interfacial friction. 
At the lower branch PCAF loses stability to capillary waves. 

2. There are yet more regions of parameter space in which PCAF is not possible. 
For these cases, bifurcation analysis is not applicable. 

3. The singular value decomposition is a useful numerical method for computing 
the coefficients of the Ginzburg-Landau equation. 

4. The stability of wavy flows near the upper branch of the neutral curve can be 
controlled by varying the density r$io c,. For example, when the other parameters 
are fixed we can choose a best 5, = 6, to maximize the minimum critical value OX,([,) 
of the linear theory on the upper branch of the neutral curve (CBJ). The bifurcation 
of waves from the upper branch OXu([,) of the neutral curve will be supercritical if c2 
is large enough. For smaller values of g, the bifurcation is subcritical. 

5. The lower branch is less sensitive to changes in 5, than the upper branch. The 
critical Reynolds number above which down-flow is linearly stable decreases with 
increasing 6,. In up-flow, smaller values of Q lead to larger regions of linear stability 
(CBJ). The bifurcation of the lower branch is controlled by the viscosity difference 
and surface tension. Changes of [, do not change the directions of bifurcation of the 
lower branch. 

6. The viscosity ratio, m, plays a key role in determining both the linear and 
nonlinear stability of core-annular flows. When m is small, linear stable PCAP 
cannot be achieved (PCJ, HLJ).  Stable PCAF can be achieved only when the 
viscosity difference 1 - m is small. 

7. Other things being equal, the linear theory tells us that we will get larger 
intervals of the Reynolds number in which PCAF is stable if the lubricating layer is 
thin, a + 1. We can say that this stability will be realized practically even when 
PCAF is unstable, if the bifurcating solutions of small amplitude are stable. This 
means that a robust form of lubricated pipelining with thin lubricating films is 
expected when the bifurcations are supercritical, but nonlinear failures may occur 
when the bifurcations are subcritical. We have in fact found that subcritical 
bifurcations for thin film solutions which bifurcate from the upper branch and these 
solutions lie in a region of thin film parameter space in which a failure of lubrication 
does occur (see BCJ). On the other hand, there are cases for which increasing the 
thickness of the lubricating layer can change subcritical bifurcation to supercritical 
bifurcation. 

8. When the flows are slight perturbations of PCAF, experiments agree perfectly 
with both linear and nonlinear theories. One example is experiment 2 of Charles et al. 
(1961) where nearly perfect core-annular flow is observed. The operating Reynolds 
number of the experiment is slightly above thc nose of the upper branch of the 
neutral curve where the bifurcation is found to bc supercritical. An even more 
convincing example is the free-fall experiment of CBJ in which PCAF is predicted 
and observed. 

9. The finite-amplitude bamboo waves observed by BCJ are evidently too far from 
PCAF to be described by our Ginzburg-Landau equation. In most cases encountered 
in the experiments of BCJ, the bifurcation theory cannot be applied because the 
corresponding PCAF is linearly unstable at all Reynolds numbers. In other cases, the 
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experimental Reynolds numbers cut through the upper branch of the neutral curves, 
but the bifurcations near the nose of the upper branch are subcritical. Thesc results 
suggest that bamboo waves and other flows far from PCAF perhaps may be best 
treated by direct numerical mcthods. 
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Appendix 
The interfacial operators corresponding to equation (3.13) are defined as : 
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J* 
aRi 

+ - (38, 8;, - &,, 8; - gs; - 88,8,, + 3828,). 
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